

Racial/ethnic disparities in early life exposure to endocrine-disrupting chemicals commonly used in personal care products

Authors: Marissa Chan, Carol Mita, Andrea Bellavia, Michaiah Parker, Tamarra James-Todd

Marissa Chan, MS Student; James-Todd Lab, Department of Environmental Health

OVERVIEW

Endocrine disrupting chemicals (EDCs)

• *Definition:* Exogenous substances that interfere with the body's hormonal processes (e.g. synthesis, secretion, transport) [1]

• EDCs are used in a variety of personal care and consumer products for their desired properties as preservatives, anti-bacterial agents, component of "fragrance", among other uses [1,2-4]

• Many EDCs in personal care products (PCPs) are ubiquitous in our environment and studies have reported detection frequencies >90% [2, 5-6]

Early life EDC exposure

- The prenatal period is a critical window of development and vulnerable to exposures [7,8]
- Studies report that higher exposure to early life EDCs have been linked to a number of adverse health outcomes

0	Birth weight [9]	00
0	Gestational age/preterm birth [10]	02
0	Glucose intolerance and gestational diabetes [11, 12]	03

- Studies are also linking PCP use to health outcomes later in life
 - Obesity [13-15]
 - Early onset of puberty [16-18]
 - Neurobehavioral, asthma, and allergic disease outcomes [8, 19, 20]

Racial/ethnic differences

- Personal care products are an important source of many EDCs; risk factor for environmental health disparities [21-24].
- Patterns of personal care product use differ by race/ethnicity-- **OI** cultural or social drivers [21, 24]
- A number of studies have evaluated EDCs commonly used in personal care products as it relates to race/ethnicity in non-pregnant populations [1, 25-29]
- Maternal and child health outcomes are found to burden certain racial/ethnic groups [8, 13-20]

Literature Review Aims

	Summarize the literature that examines early life exposure to 8 chemicals or classes of chemicals:	
1	phthalates, parabens, benzophenone-3, triclosan, cyclic volatile methylsiloxanes, formaldehyde-	01
•	releasing preservatives, 1,4-dioxane, and diethanolamine among women of different racial/ethnic	02
	backgrounds in the U.S. and Puerto Rico	03
	Review articles that report stratified data on early life exposure to the 8 chemicals or classes of	04
	concern, but do not examine the racial/ethnic disparities in health outcomes	05

Provide recommendations for research needed to fill the gap in the literature on EDC-associated
 personal care product use as an important contributor to racial/ethnic maternal and child environmental health disparities.

Methods

Search strategy

- Prenatal exposure
- 8 chemicals or classes of chemicals
- Biomonitoring (e.g. urine, blood)
- US based
- Chemical concentrations by race/ethnicity
- Exclude animal studies

Databases searched from inception through March 2020

- PubMed/Medline (National Library of Medicine),
- EMBASE (Elsevier),
- Web of Science Core Collection, including the Science Citation Index and Conference Proceedings Citation Index- Science (Thomson Reuters),
- and the Cochrane Central Register of Controlled Trials

Results

Tier 1: 3 articles examined racial/ethnic differences

Phthalates

Cohorts	Author, Year	Race/ethnicity	Chemical measured	Main findings	
LIFECODES	James-Todd et al. 2017	White, Black, Asian, Hispanic, Other	9 phthalate metabolites	 Highest metabolites (MBP, MiBP, MBzP, and MEP) among NH Blacks, Hispanics, and "Other" MEP decreased throughout pregnancy for Hispanic women while increased in late pregnancy for NH Black women 	01 02 03 04
Delivery at the Medical University of South Carolina (MUSC)	Bloom et al. 2019, Wenzel et al. 2018	White, Black	8 phthalate metabolites	- NH Black women had significantly higher urinary concentrations of MBP, MiBP, MBzP, and MEP compared to NH White women	0.5

NH- non-Hispanic MBP- Monobutyl phthalate MiBP- Mono-isobutyl phthalate MBzP Monobenzyl phthalate MEP- Monoethyl phthalate

Tier 2 40 articles presented racial/ethnic stratified exposure data; primary aim not to examine differences

Phthalates (1)

Cohorts	Manuscripts	Race/ethnicity	Comp	arison to NHANES	
Columbia Center for Children's Environmental Health (CCCEH)	12	African American, Dominican	=	Metabolite concentrations generally comparable	
Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS)	13	Hispanic	=	Metabolite concentrations generally comparable (slightly higher)	
Delivery at MUSC	Wenzel et al. 2018	White, Black	x	No comparison	
Environment and Reproductive Health Study (EARTH)	Mínguez-Alarcón et al. 2019	White, Black/Asian/Other	X	No comparison	

Tier 2 40 articles presented racial/ethnic stratified exposure data; primary aim not to examine differences

Phthalates (2)

Cohorts	Manuscripts	Race/ethnicity	Compa	arison to NHANES
Healthy Start	Polinski et al. 2018	White, Hispanic, Black, Other	↑/↓	Average concentrations of MBP, MBzP, MEP, MEHP, MEHHP, MEOHP and MECPP were lower and MiBP concentrations were higher
Health Outcomes and Measures of the Environment Study (HOME)	Werner et al. 2015	White, non-White	Х	No comparison
LIFECODES	3	White, Black, Other	X	No comparisonMEHP and other DEHP metabolites higher in Black participants
Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)	6	Puerto Rican	↑	Majority of metabolites greater than NHANES
The Infant Development and Environment Study (TIDES)	Martino-Andrade et al. 2016; Serrano et al. 2014	White, Other White, Asian, Black, Other, Multi	=	Metabolite concentrations generally comparable
				MEHP- mono-(2-ethyl-5-hexyl) phthalate

MEHP- mono-(2-ethyl-5-hexyl) phthalate MEHHP- mono-(2-ethyl-5-hydroxyhexyl) phthalate MEOHP mono-(2-ethyl-5-oxohexyl) phthalate MECPP- mono-(2-ethyl-5-carboxypentyl) phthalate DEHP-Di-2-ethylhexyl phthalate

Tier 2

17 articles presented racial/ethnic stratified exposure data; primary aim not to examine differences

Phenols (1)

Cohorts	Manuscripts	Chemical	Race/ethnicity	Compa	rison to NHANES
CHAMACOS	Harley et al. 2019; Berger et al. 2018	Methyl-, propyl-, and butyl paraben, triclosan, benzophenone-3 (BP3)	Hispanic	^/=	Higher methyl paraben concentration, others comparable to NHANES
Healthy Start	Polinski et al. 2018	Methyl- and propyl paraben, triclosan, BP3	White, Hispanic, Black, Other	<u>↑/↓/=</u>	Higher BP3 concentration, lower triclosan, similar methyl- and propyl paraben
EARTH	Mínguez-Alarcón et al. 2019	Methyl paraben and propyl paraben	White, Other (Black, Asian, Other)	x	No comparison
HOME	Kalloo et al. 2018, Etzel et al. 2017, Stacy et al. 2017	Triclosan	White, Black, Other	=	Comparable to NHANES
LIFECODES	Aung et al. 2019	Methyl-, ethyl-, propyl-, and butyl paraben, Triclosan, BP3	White, Black, Other	=	Comparable to NHANES (slightly higher methyl- and propyl paraben)

Tier 2

17 articles presented racial/ethnic stratified exposure data; primary aim not to examine differences

Phenols (2)

Cohorts	Manuscripts	Chemical	Race/ethnicity	Comparison to NHANES	
National Children's Study (NCS)	Mortensen et al. 2014	Methyl- and propyl paraben, triclosan, BP3	Hispanic	=	Comparable to NHANES
PROTECT	4	methyl-, ethyl-, butyl,- and propyl- paraben, triclosan, BP3	Puerto RIco	1	Higher concentrations compared to NHANES
Vitamin D Antenatal Asthma Reduction Trial (VDAART)	Lee-Sarwar et al. 2018	Methyl- and propyl paraben, triclosan	Black, White, Hispanic, Other	X	No comparison
Recruited from University Hospital of Brooklyn Prenatal Clinic	Geer et al. 2017, Pycke et al. 2015, Pycke et al. 2014	Methyl-, ethyl-, propyl-, butyl-, and benzyl paraben, triclosan	Black (African American, Caribbean, African), Hispanic, Other	Î	Higher concentration of triclosan and ethyl- and butyl paraben

Call for Action

Future Research

- Increased research examining early life EDCs as a plausible risk factor for racial/ethnic disparities in maternal and child health outcomes
- Examination of PCP chemical exposure in racially/ethnically diverse populations/cohorts
- Inclusion of results stratified by race/ethnicity when reporting EDC concentrations
- Examination of early life exposure to PCP chemicals that have not been studied (e.g. cyclosiloxanes, formaldehyde releasing preservatives, 1,4-dioxane, diethanolamine)
- Assessment of PCPs and other sources of EDCs in the same studies to understand the degree to which PCPs and other sources contribute to existing disparities
- Examination of sociocultural and socioeconomic determinants of disparities in exposure and how they interact with race/ethnicity

CONCLUSION

The majority of research adjusts for race/ethnicity--examining exposures by race/ethnicity may reveal populations at risk and lead to modifiable risk factors which can inform interventions

ACKNOWLEDGEMENTS

James-Todd Lab

Dr. Tamarra James-Todd Dr. Andrea Bellavia Dr. Emma Preston Marlee Quinn Veronica Wang Zifan Wang Ayanna Coburn-Sanderson Sanjana Bhaskar Jennie Lytel-Sternberg Rasha Baig Jordan Arvayo Shivani Parikh + Michaiah Parker + Carol Mita

Funding

National Institute of Environmental Health Sciences, the Centers of Disease Control and Prevention's National Institute for Occupational Safety and Health.

REFERENCES

1. James-Todd T, Terry MB, Rich-Edwards J, Deierlein A, Senie R. Childhood Hair Product Use and Earlier Age at Menarche in a Racially Diverse Study Population: A Pilot Study. *Ann Epidemiol.* 2011;21(6):461-465. doi:10.1016/j.annepidem.2011.01.009

2. Hauser R, Calafat A. PHTHALATES AND HUMAN HEALTH. Occup Environ Med. 2005;62(11):806-818. doi:10.1136/oem.2004.017590

3. Calafat AM, Ye X, Wong L-Y, Bishop AM, Needham LL. Urinary Concentrations of Four Parabens in the U.S. Population: NHANES 2005–2006. *Environ Health Perspect*. 2010;118(5):679-685. doi:10.1289/ehp.0901560

4. Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL. Urinary Concentrations of Triclosan in the U.S. Population: 2003–2004. *Environ Health Perspect*. 2008;116(3):303-307. doi:10.1289/ehp.10768

5. Donovan M, Tiwary CM, Axelrod D, et al. Personal care products that contain estrogens or xenoestrogens may increase breast cancer risk. *Med Hypotheses*. 2007;68(4):756-766. doi:10.1016/j.mehy.2006.09.039

6. Meeker, J.D., *Exposure to environmental endocrine disruptors and child development.* Archives of pediatrics & adolescent medicine, 2012. **166**(10): p. 952-958.

7. Braun, J.M., Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nature Reviews Endocrinology, 2017. 13(3): p. 161.

8. Smarr, M.M., et al., *Parental urinary biomarkers of preconception exposure to bisphenol A and phthalates in relation to birth outcomes.* Environmental Health, 2015. **14**(1): p. 73.

9. Just, A.C., et al., *Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort*. Environmental health perspectives, 2012. **120**(10): p. 1475-1480.

10. James-Todd, T.M., et al., *Pregnancy urinary phthalate metabolite concentrations and gestational diabetes risk factors*. Environment International, 2016. **96**: p. 118-126.

11. Shaffer, R.M., et al., *Maternal urinary phthalate metabolites in relation to gestational diabetes and glucose intolerance during pregnancy.* Environ Int, 2019. **123**: p. 588-596.

12. Buckley, J.P., et al., *Prenatal phthalate exposures and body mass index among 4 to 7 year old children: A pooled analysis.* Epidemiology (Cambridge, Mass.), 2016. **27**(3): p. 449.

13. Buckley, J.P., et al., *Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children's Environmental Health Study.* Environment international, 2016. **91**: p. 350-356.

14. Harley, K.G., et al., Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity. Pediatric Research, 2017. 82(3): p. 405-415.

15. Watkins, D.J., et al., *In utero and peripubertal exposure to phthalates and BPA in relation to female sexual maturation.* Environmental research, 2014. **134**: p. 233-241.

16. Zhang, Y., et al., Could exposure to phthalates speed up or delay pubertal onset and development? A 1.5-year follow-up of a school-based population. Environment international, 2015. 83: p. 41-49.

17. Iwasaki, M., et al., Role and impact of menstrual and reproductive factors on breast cancer risk in Japan. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP), 2007. **16**(2): p. 116-123.

18. Wu, T., P. Mendola, and G.M. Buck, *Ethnic differences in the presence of secondary sex characteristics and menarche among US girls: the Third National Health and Nutrition Examination Survey*, 1988-1994. Pediatrics, 2002. **110**(4): p. 752-757.

19. Kobrosly, R.W., et al., *Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age.* Environmental health perspectives, 2014. **122**(5): p. 521-528.

20. James-Todd, T., R. Senie, and M.B. Terry, *Racial/ethnic differences in hormonally-active hair product use: a plausible risk factor for health disparities.* Journal of Immigrant and Minority Health, 2012. **14**(3): p. 506-511.

21. Crawford, K. and C. Hernandez, A review of hair care products for black individuals. Cutis, 2014. 93(6): p. 289-93.

22. Meeker, J.D., et al., *Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico.* Environmental Science & Technology, 2013. **47**(7): p. 3439-3447.

23. Ranjit, N., K. Siefert, and V. Padmanabhan, *Bisphenol-A and disparities in birth outcomes: a review and directions for future research.* J Perinatol, 2010. **30**(1): p. 2-9.

24. Zota, Ami R., and Bhavna Shamasunder. 2017. "The Environmental Injustice of Beauty: Framing Chemical Exposures from Beauty Products as a Health Disparities Concern." *American Journal of Obstetrics and Gynecology* 217 (4): 418.e1-418.e6. https://doi.org/10.1016/j.ajog.2017.07.020.

25. Gaston, S.A., et al., Chemical/straightening and other hair product usage during childhood, adolescence, and adulthood among African-American women: potential implications for health. J Expo Sci Environ Epidemiol, 2020. **30**(1): p. 86-96.

26. Bennett, D.H., et al., Usage pattern of personal care products in California households. Food and chemical toxicology, 2010. 48(11): p. 3109-3119.

27. Branch, F., et al., Vaginal douching and racial/ethnic disparities in phthalates exposures among reproductive-aged women: National Health and Nutrition Examination Survey 2001–2004. Environmental Health, 2015. **14**(1): p. 57.

28. McKee, M.D., M. Baquero, and J. Fletcher, Vaginal hygiene practices and perceptions among women in the urban Northeast. Women & Health, 2009. **49**(4): p. 321-333.

29. Taylor, K.W., et al., Associations between personal care product use patterns and breast Cancer risk among white and black women in the sister study. Environmental health perspectives, 2018. **126**(2): p. 027011.

